Chiversityorldaho

Naturally Occurring Toxicants as Etiologic Agents of Foodborne Disease

Food Toxicology Instructor: Gregory Möller, Ph.D. University of Idaho

Learning Objectives

• Examine the etiology (causation) of human disease related to naturally-occurring foodborne toxicants.

- Understand the chemical complexity of foods.
- Explore goiter, tropical ataxia neuropathy (TAN), tropical amblyopia, lathyrism, and their linkage to foodborne toxicants.
- Review a range of natural food toxicants that are involved in human disease.

Nutrients Non-nutrients • Carbohydrates • Food Additives • Proteins • Naturally Occurring • Lipids • Contaminants • Minerals • Processing • Vitamins • Processing

Non-nutrient Chemicals in Different Foods

•	Cheddar Cheese	160
•	Orange juice	250
•	Banana	325
•	Tomato	350
•	Wine	475
•	Coffee	625
•	Cooked beef	625

Natural Toxicants and Human Disease

- Goitrogens
- Cyanogenic glycosides
- Lathyrism
- Lectins
- Alkaloids
- Protease inhibitors
- Vasoactive amines

5

Goitrogens

- Contribute to growth of goiters
- Compounds in Cruciferae
 - Brassica species (cabbage, kale, turnips)
 - Seeds only not leaves
- Combined w/ iodine deficiency

Cruciferae \rightarrow Glucosinolates

- A class of about 100 naturally occurring thioglucosides that are characteristic of the Cruciferae and related families.
- Diets of people in many parts of the world include considerable amounts of Cruciferous crops and plants.
 - Processed radish and wasabi in the Far Eas
 Cabbage and traditional root vegetables in
- Cabbage and traditional root vegetables in Europe and North America.
- Rapeseed, kale, swede and turnip may also contribute since they are extensively used as animal feed stuffs.
- Glucosinolates in crops, such as oilseed rape (Brassica napus) and Brassica vegetables, is undesirable because of the toxicological effects of their breakdown products.
- Breakdown products include nitriles, isothiocyanates, thiocyanates, epithionitriles and vinyl oxazolidinethiones.
- HHHHHHHHHHH

 Goitrogenic compounds (goitrin) are formed from breakdown of glucosinolates by thioglucosidase
 Goitrogenic metabolites

- Nitriles; Thiocyanates; Oxazolidine

Goitrogens

- Thyroid gland secretes thyroxine (TY), triiodothyronine (TII), thyroglobulin(TH)
- · Controlled by hypothalamus and pituitary
- Hypothalamus produces thyrotropin-releasing hormone (TRH)
- Stimulates pituitary to release thyroid-stimulating hormone (TSH)

Goitrogens

 TSH promotes uptake of iodine, synthesis of TH and release of TY and TII which feed back to reduce TSH

TY and TII hormones also affect

- Oxygen consumption, cardiovascular function, neuromuscular activity, cholesterol metabolism, cerebral function
- Growth and development

Goitrogens

- · Goitrin and thiourea inhibit TY synthesis
- Thiocyanates, oxazolidine and nitriles inhibit uptake of iodine by thyroid
- Lack of iodine causes thyroid to enlarge and hypervascularate to trap more iodine = goiter

Goitrogens - Testing

- · Weight and histology of thyroid
- Growth rate of patient/animal
- lodine content of blood and thyroid
- Feed compound measure uptake of radioactive iodine

Cyanogenic Glycosides Glycoside

<u>Plant</u> • Bitter almond

- · Cassava root
- Sorghum
- Lima bean

• Amygdalin • Linamarin

• Dhurrin

• Linamarin

source of carbohydrate. Cultivars contain varying amounts of CGs

- Cultivar, drought, and food
- preparation significant for CGs

- **Cyanogenic Glycosides**
- Toxic chemical = hydrogen cyanide
- · HCN released when plant is chewed or chopped
- Releases 2 enzymes normally separate
 - Beta-glucuronidase
 - Hydroxynitrile lyase
- Act synergistically to release HCN

Cyanogenic Glycosides

- Can reduce CN by chopping or grinding in water
- Cassava flour is made from boiled or fermented root Intestinal bacteria may also be able to break down
 - cyanogenic glycosides to HCN

Cyanogenic Glycosides

Amygdaline (Laetrile)

- Anticancer compound
- · Apricot pits
- Not approved in US
- · Several deaths in foreign countries

Acute Cyanide Poisoning: Mechanism

- Shuts down cellular respiration energy metabolism in mitochondria
- Binds ferric ion on cytochrome oxidase in Krebs cycle Min lethal dose
- 0.5-3.5 mg HCN/kg bw

Acute Cyanide Poisoning Symptoms

- Muscular paralysis
- Mental confusion
- Respiratory distress
- Rapid onset

Acute Cyanide Poisoning

Treatment

- Nitrite or amyl nitrite
- Converts hemoglobin (Fe⁺²) to methemoglobin (Fe⁺³)
- Draws CN⁻ away from cytochrome oxidase

 Add thiosulfate to form thiocyanate

Chronic Cyanide Poisoning

- Occurs in areas of cassava in diet
- Not well understood
- Two disorders
 - Tropical Ataxia Neuropathy (TAN)Tropical Amblyopia

Chronic Cyanide Poisoning

Tropical Ataxia Neuropathy (Konzo)

- Atrophy of optic nerve, ataxia, mental disorders
- More prevalent West Africa
- High prevalence of goiter
- Low levels of S-containing aa

Elevated plasma thiocyanate (goitrogen)

Konzo, a paralysis disease caused by poisoning from cyanide in cassava flour

Chronic Cyanide Poisoning Dietary Modifiers

- No goiter with adequate iodine
- Malnutrition increases neural effects
- Protein-deficient diets
 - Lack S-containing amino acid to convert CN⁻ to thiocyanate

Chronic Cyanide Poisoning Tropical Amblyopia

..

- Atrophy of optic nerve

 Blurred vision, blindness
- Africa and South America where cassava is staple in diet
- Reproducible in lab animals

24

<u>--</u>

Lathyrism

- Consumption of peas esp. Lathyrus sativus
 - Grass pea, blue sweet pea, chickling vetch, Indian pea, Indian vetch, white vetch, almorta or alverjón (Spain), guaya (Ethiopia), and khesari (India).
 Primarily restricted to areas in Asia/Africa
- Well-known neurodegenerative disease
- Enzyme inhibitor (BAPN)
 - Neurotoxic amino acid (ODAP)
- Hardy plant, drought resistant

Lathyrism

- Two forms disease
- Osteolathyrism animals
- Neurolathyrism humans

26

•

Osteolathyrism Animals • Bone deformations • Weakness in artery wall and connective tissues • Beta-L-glutamylaminoproprionitrile (BAPN)

Osteolathyrism Mechanism

- BAPN inhibits lysyl oxidase enzyme
- Lysyl oxidase is needed to crosslink collagen strands for strength
- Collagen is main component of connective tissue and bones

Neurolathyrism Humans

- Chronic consumption of L. sativus
- Paralysis of legs followed by general weakness and muscle rigidity
- Young man disease
- Sudden onset
- Calf muscle spasms
- No animal model

Neurolathyrism Humans B-N-oxalyl-L-alpha, B-diaminoproprionic acid (ODAP) $\mu_{0_2} c_{-} + h_{0_2} + f_{0_2} + f_{0_2}$

Neurolathyrism

Humans

- Etiologic agent may be ODAP
- Only found with *L. sativus* species
- OPAP interferes with normal function of nerve synapse
 - Inhibits uptake of glutamic acid
- No animal model to study

31

Cholinesterase Inhibitors

- Found in a variety of plants potato, tomato, eggplant
- Western African calibar bean (prototype)
 Physostigmine
- Natural carbamate

Cholinesterase Inhibitors Solanine

- Greatest concentrations
 - Peel, around sprouts
- Natural/artificial light increases levels
- Russet Burbank 250-700 mg/kg 5 days
- Green due to chlorophyll
 Ttoxicity marker

Cholinesterase Inhibitors

Solanine

- Documented human toxicity and death
- Potato sprouts, sprouted potatoes, greened potatoes
- Gastric pain, nausea, vomiting, hyperesthesia, increased & accelerated respiration

 2/6 deaths
- Concentration unknown

Cholinesterase Inhibitors Solanine - Case Study

- 420 mg/kg total alkaloid content
- Approx 50% solanine = 200 mg/kg
- Need to consume 1 kg potato for toxicity due to only solanine
- May act with other glycoalkyloids

 Chaconine
- Animal LD₅₀
 500-1000 mg/kg

Vasoactive Amines

- Highest in cheese (aged), beer, wine
- Lower levels in banana, tomato, avocado, spinach, orange
- Spoiled meat (see food allergy)
- "Pressor Amines" (catecholamines)
- Cause vasoconstriction, hypertension

Vasoactive Amines: Problems

- Monoamine oxidase (MAO)
 - Widely distributed in body
 - Breaks down vasopressive amines
- MAO inhibitors treat clinical depression
- Co-exposure to vasopressive amines in food

Vasoactive Amines: Tyramine Mechanisms

- Indirect action
- Displaces normal catecholamines from granules in nerves
- Leads to hypertension
- Can be severe in presence of MAO inhibitors

Vasoactive Amines Levels in Food - mg/kg

- Tyramine*****
 - Cheese 20-2000
- Avocado 25
- Seratonin
 - Banana pulp 30
 - Avocado 10
- All others < 10, all sources

.

Vasoactive Amines Symptoms

- Hypertension
 - Mild to severe
- Migraine headache
- Rare intracranial bleeding/death

Pyrrolizidine Alkaloids

- A problem in food animal forage and human subpopulations exposed acutely in a toxic incident or chronically via cultural foods.
- High levels in some plants >5% dry wt
- 100 different compounds

Pyrrolizidine Alkaloids

Most human exposure from herbal tea or crop contamination ______

- Low level exposure from milk/meat
- Bush tea in Jamaica
- Decreased use as herbal medicine
 Comfrey wound dressing (+other)
- Carcinogenic and liver toxin
- in animals
- Epoxidation

43

PA Hepatotoxicity: Veno-Occlusive Disease

- Occlusive lesions are produced in the centrolobular hepatic veins (obliterating endophlebitis).
- Subendothelial edema, narrowing and occlusion of the lumina, atrophy, and necrosis of liver cells with portal hypertension are the results.

Fibrous occlusion of acentrolobular venule

Tajikistan, 1992

- Due to a military blockade there was a late wheat harvest.
- Weeds were able to thrive in wheat fields.
- The harvest contained large amounts of the seed of Heliotropium lasocarpium.
- The first cases occurred 6 weeks after contaminated bread was consumed.
- By the spring of 1993 there had already been more than 3900 cases.
- Patients at Stage I had abdominal pain, nausea, vomiting and asthenia.
- In Stage II hepatomegaly followed.
- Stage III was characterized by ascites.
- In the final stage there is hepatic encephalopathy.
- Case fatality ratio was 1.3% and increased with age.
- 46

48

Protease Inhibitors

- Anti-nutritional compounds – Legumes, grains, potatoes, eggplant, onion
- Inhibit gastric enzymes that break down proteins

 e.g. trypsin (protease)
- · All toxicity studies in animals
 - Human relevance unclear

Protease Inhibitors

• Pancreatic hypertrophy

- Pancreatic hypersecretion of amino acid-rich proteins
 aa deficiency
- Growth retardatio
- · Similar mechanism of lathryism

Other Possible Natural Toxicants

- Caffeine
- Spices
- Licorice, nutmeg, sassafras
- Phytoalexins

Vicine and Convicine

- Fava bean alkaloids
- Causes favism in people who have an inherited absence of the enzyme glucose-6-phosphate dehydrogenase (G6PD) in their red blood cells
 - Headaches, dizziness, nausea, yawning, then
 - Vomiting, abdominal pain, and fever.
 - At this point, symptoms either spontaneously subside,
 - Or acute hemolytic anemia via oxidative stress occurs

54

Lectins

- Proteins or glycoproteins that bind carbohydrates
- Cause cells to agglutinate
- Basis for blood-type assays (hemagglutination)
- Decrease nutrient absorption from intestinal cells

Lectins: Sources

- Plant (800 species) and animal tissues
- Black beans, soybeans, lima beans, kidney beans, peas, lentils

Lectins: Mechanism of Action

- Unknown; complex
- Prevents nutrient uptake
- Gut flora involved
 Germ-free animals show less effects
- Immune component?